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Abstract
We propose an efficient vectorial implementation of a region

merging segmentation algorithm. In this algorithm the merging or-
der is based on edge value, and the merging predicate exploits recent
statistical investigations. A notable acceleration is obtained by ex-
ploiting two forms of parallelism, firstly the Data Level Parallelism
by processing edges of the same weight in parallel, secondly the In-
struction Level Parallelism. Moreover, the classical UNION-FIND
data structure is improved by using local registers to reduce the ac-
cess time of FIND operations. Finally the implementation could be
easily tuned to extract textures (object analysis) or all edges (image
enhancement).

INTRODUCTION
Researchers have been working on image segmentation for

more than 30 years. Image segmentation is an ill-defined problem,
and until now no standards were defined for this field. Nevertheless,
many applications could benefit widely from a good segmentation
algorithm, for example object oriented compression, pattern recog-
nition, 2D/3D conversion and many others. The image segmentation
algorithms could be classified into two categories, namely contour-
based and region-based methods. In the first category we find out the
significant object boundaries and extract connected components [1].
The main difficulty in this category is to find boundaries closed over
objects especially in noisy images. Moreover this approach doesn’t
benefit from statistical properties of the image. Because of these lim-
itations, the second category, i.e. region-based, is more often used.
In these methods, we merge neighbours regions that verify a cer-
tain similarity criterion. Two important points define completely a
region-based algorithm: the first one is the similarity criterion used
to indicate whether two regions should be merged or not, the sec-
ond one is the order in which the similarity test should be done.
There is an important gap about the way these two points interact.
Many similarity criterions have been used in the segmentation liter-
ature, In [2] the most used criterion are reviewed, In [3, 4, 5] some
robust criterion are proposed. These similarity criterions are com-
bined with a data structure that establishes an order in similarity
test. In [6], they use a tree structure and propose two merging or-
der, ”mergesquare”, which is claimed as a parallel algorithm, and
”scanline”, which is sequential. The main drawback of these orders
of merging is that they don’t depend on the image content, which
influence the segmentation result. In the region adjacency graph ap-
proach (RAG), we can achieve the best local merge, i.e. every region
will merge with the most similar of its neighbours. In [7, 8], a Val-
ued region adjacency graph is computed and decomposed in a set of
partial complete graph. The RAGs are also used in pyramidal struc-
ture [9, 10, 11]. But RAGs approaches still do not exploit global
information of the image. In the implementation point of view, seg-
mentation algorithms are very computing-intensive. Many works

proposed parallel algorithms of segmentation to solve the implemen-
tation issue. The irregular pyramids were particularly designed to fit
a massively parallel architecture. We can also cite [12] in the scope
of parallelizing segmentation algorithms. But all these works don’t
conciliate the exploitation of global information with the paralleliza-
tion issue.

In this paper we propose an implementation tending toward this
conciliation. We use the algorithm proposed in [13], which com-
bine an order of merging that depends on the content of the image
with an adaptive threshold for fusion. We propose an original im-
plementation where the main parts of the algorithm are simplified
or vectorized. In the following sections, firstly the algorithm is de-
scribed, then we propose some implementation solutions where the
main steps of the algorithm are vectorized or simplified, and finally
we propose a method to tune the algorithm in order to extract tex-
tured regions or to extract edges.

THE SEGMENTATION ALGORITHM
In [13], Nock et al proposed a region-based merging. In this

algorithm, they combine a specific order of merge with an original
similarity criterion. As far as notations are concerned, let consider
an image I. The notations h and w denote respectively the horizon-
tal and vertical size of the image, |I| = h ∗w is the total size of the
image, a(p) is the pixel colour level at position p. In the two fol-
lowing sections we explain the order of merging and we present the
similarity criterion.

ORDER OF MERGING
The order of merging is built based on the edges values as in

[13, 3]. The idea behind this order of merging is to merge first what
is similar before merging what is different.

In our algorithm, an edge corresponds to a couple of pixels
(p, p′) in 4-connectivity, we will refer to an edge by its position e.
The edge value v corresponds to the maximum of the three differ-
ences over the three colour components {R,G,B} :

v(p, p′) = max
a∈{R,G,B}

(∣∣a(p)−a(p′)
∣∣) . (1)

The edges are then sorted in an increasing order of their values and
corresponding pixels are treated in this order for fusion.

THE CRITERION OF MERGING
We use the criterion of merging proposed in [13]. Let’s explain

briefly how this criterion works. Given two neighbours segments
s1 and s2, the average of the three colour components within these
segments are denoted by µa1 , µa2 with a ∈ {R,G,B}. The segment
cardinal of si is denoted |si|. The criterion for merging the two seg-



ments is the following:

Pr(s1,s2) =

{
true i f ∆µ(s1,s2)≤ g∗√ f (s1)+ f (s2)

f alse otherwise
(2)

∆µ(s1,s2) = max
a∈[R,G,B]

(µa1 −µa2).

The adaptive threshold f (si) takes into account the segment size |si|
as follows:

f (si) = min(g, |si|)∗ ln(|si|+1)+ ln(γ)
2∗Q∗ |si| . γ = 6∗ |I|2.

Where the parameter g corresponds to the maximum colour level,
and Q is a parameter set by the user that could tune the coarseness
of the segmentation. This threshold is based on a statistical model
of the image and obtained using McDiarmid’s inequality, see[13] for
more details.

IMPLEMENTATION
As shown in Fig.1 the algorithm can be decomposed in three

main steps. The first step corresponds to the computation of the his-
togram of edges. This histogram is then used to order edges. In the
third step, the merging is performed following this order of edges.
The parallelism in the three steps is not obvious to extract. Indeed
the three operations are irregular both in data access from the mem-
ory and in computations. In this paper we focus on the vectorization
of computation. In this vectorization we process in parallel a vector
of n data D= [d1,d2...dn]. In the following we detail the vectoriza-
tion of the main steps of the algorithm, i.e histogramming, sorting
of edges and merging.

HISTOGRAMMING VECTORIZATION
Let us consider that H denotes the histogram of edge values

that is computed in this step. To compute H, firstly we compute
edges values v as detailed in equation (1), secondly we compute the
distribution H of these values.
There is no data dependency in the computation of edges values,
so we can achieve this operation in a vectorial way over a vector
of edges E = [e1,e2...en], which results on a vector of values V =
[v1...vn]. However, computing the distribution H of the edges values
in a vectorial way, is not straightforward. Indeed two edges values
could be equal, and incrementing the histogram’s bin corresponding
to this value in a parallel way will give incorrect result. To solve this
data dependency, we consider an array T of g+1 cells, each cell is
n bits width. Each vi in V sets the ith bit of the vth

i cell of T . Then
we add the bits of each cell of T in one instruction. The result in
T is used to update the histogram H. The algorithm is described in
details in Algorithm 1.

From a hardware point of view, this vectorization requires bi-
nary adders with n inputs, which is very simple.
Let us explain how the histogram H is used for the sorting step. We
consider an array Mv of size h ∗ (w− 1)+ (h− 1) ∗w, which is the
number of edges in the 4-connectivity in the whole image. This ar-
ray Mv will be used to store the order of edges. We compute the
accumulated histogram Ha as detailed in the following equation:

Ha[0] = 0;

Ha[i] = H[i−1]+Ha[i−1]; (3)

Algorithm 1 Vectorization of histogramming

for i ∈ [0 : g] do
for j ∈ [0 : n−1] do

T [i][ j] = 0
end for

end for
for i ∈ [0 : n−1] do

T [vi][i] = 1
end for
for i ∈ [0 : n−1] do

H[vi] = H[vi]+∑ j=n−1
j=0 T [vi][ j]

end for

Figure 1. General diagram of image segmentation.

The accumulated histogram Ha is used to partition Mv in g+1 parts,
the ith part is limited between Ha[i] and Ha[i+1] addresses. In this
ith part of Mv we will store edges with values equal to i.

SORTING VECTORIZATION
In this step, we want to assign to a vector E of edges a vec-

tor of addresses A where they will be stored in Mv. There is a data
dependency in this step; if two edges have the same value, the as-
signment of two different addresses to these two edges in parallel
way is not obvious. To solve this dependency, we use the same idea
as detailed in the previous section. We reinitialise the histogram H
to zero. Each edge E[i] with value equal to vi sets the ith bit of the
vth

i cell in T . Then we assign to E[i] an address A[i] based on Ha and
the re-computation of H as detailed in Algorithm 2.

MERGING VECTORIZATION
The algorithm of merging is described in Algorithm 3. This

algorithm uses the UNION-FIND data structure. For an edge that
corresponds to a couple of pixels (p1, p2), we use the ”FIND” oper-
ation to find the couple of segments (s1,s2) containing these two pix-
els, then the predicate is evaluated for (s1,s2) as described in equa-
tion(2). If the predicate is true, we make the ”UNION” of s1 and s2.
Let’s assume that s1 becomes the parent After the ”UNION” opera-
tion, then we update the properties of s1 (|s1|,sumR1 , sumG1 , sumB1 ),
where the notation suma1 , denotes the sum of the a component for
all the pixels belonging to the segment s1. These information are
updated in the main memory after the processing of each edge. In



Algorithm 2 Vectorization of sorting

for i ∈ [0 : g] do
for j ∈ [0 : n−1] do

T [i][ j] = 0
end for

end for
for i ∈ [0 : n−1] do

T [vi][i] = 1
end for
for i ∈ [0 : n−1] do

A[i] = Ha[vi]+H[vi]+∑ j=n−1
j=i T [vi][ j]

end for
for i ∈ [0 : n−1] do

Mv[A[i]] = E[i]
end for
for i ∈ [0 : n−1] do

H[vi] = H[vi]+∑ j=n−1
j=0 T [vi][ j]

end for

Algorithm 3 Merging process
for all the edges in the sorted list do

p1 and p2 are the pixels connected by the edge
s1= FIND(p1)
s2= FIND(p2)
if (Pr(s1, s2) = True) then

UNION(s1,s2)
end if

end for

this paper we focus on the vectorization of the predicate evaluation
and the ”UNION” operation for a vector S of couples (s1,s2). The
FIND operation is still hard to parallelize.

Firstly we propose a simplification for the thresholds computa-
tion detailed in equation (2). We use a piecewise linear approxima-
tion of the function f . This linearization, which is obtained by di-
chotomy, provides a Look Up Table. To compute a threshold value f
corresponding to one segment cardinal |si|, we read the coefficients
α and β from the LUT, and the computing is f (si) = α ∗ |si|+ β .
This trick simplifies the computation a lot without a visible loss of
quality in the segmentation result.

Let us explain how the vectorization of the merging step is
achieved. We consider a vector of couples of segments S, which
is the result of the ”FIND” operation applied on a vector of edges E.
We load the vector S and the data corresponding to each segment si
(|si|,sumRi , sumGi , sumBi ) in local registers. Processing the vector S
in parallel is not straightforward because one segment label si could
be equal to another s j, and the result of merging will be incorrect as
described in the example Fig.3. So the level of parallelism depends
highly on the image content.

The vectorization of the merging of S is done in the following
way. Firstly the elements of the vector S are classified into two parts,
the first one contains independent couples (si,si+1) where one la-
bel si figures once only, the second part contains dependent couples
where one label si figures in another couple in S. Firstly we process
the first part of S in parallel way. Secondly we process in sequential
way the second part. We then investigated the optimal width n of the
vector S that gives the best data level parallelism (DLP) exploita-

Figure 2. Ratio between the number of operations of the sequential merging

and the merging when exploiting data level parallelism.

(a) (b)

Figure 3. Merging two couple of segments (s1,s2) and (s1,s3): a. Parallel

merge, after merging, s1 belongs to s2 and s3, which are two different segments,

so the result is incorrect. b. Sequential merge : after the first merge s1 belongs

to s2, after the second merge both s1 and s2 belong to s3, the result is correct

tion. In this investigation, we compute the ratio between the number
of operations in the vectorized merging, over the number of opera-
tions in the sequential merging described in Algorithm 3. In Fig.2
we show this ratio for different vector widths and for many real se-
quences. The acceleration is maximal for a vector width around 25.

In addition to the DLP exploited by processing the first part of
S in parallel, the processing of the second part of S benefits from
the locality of data. Indeed, if two couples (si,si+1), (s j,s j+1) share
one label, they are processed sequentially. The latest one will use
the result of merge of the first one, which is still be available in local
registers, instead of getting it from the main memory as in the simple
sequential merging.

In the other hand when evaluating the predicate and updating
segment’s properties, some of the operations are independent and
could be parallelized. Let us consider that s1 and s2 are merged, and
s2 becomes the representative of the two segments. The operations
used for the evaluation of the predicate and for updating are :

-Predicate evaluation:
f (s1) = α1 ∗ |s1|+β1; f (s2) = α2 ∗ |s2|+β2;
µa1 = suma1/|s1|; µa2 = suma2/|s2|;
∆µ(s1,s2) =maxa∈[R,G,B](µa1 −µa2);

∆µ2(s1,s2) = ∆µ(s1,s2)∗∆µ(s1,s2); tr = f (s1)+ f (s2);
Comparison(∆µ2(s1,s2), tr);

-Updating of segment properties:
|s2|= |s1|+ |s2|;suma2 = suma1 + suma2 ;

There are 18 operations in the processing of the couple (s1,s2). If
we have enough resources (4 ALUs, 4 MACs, 6 Divider), we can
use the instruction level parallelism (ILP), and do this processing in
six steps.
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Figure 4. Tuning segmentation: a. The original image. b. An edge-oriented

segmentation. c. A texture-oriented segmentation

TUNING THE SEGMENTATION
The image segmentation requirements are different depending

on the application. In image enhancement, the main properties to
find are edges in order to process pixels belonging to homogeneous
segments in the same manner, while in many image analysis appli-
cations like pattern recognition, texture extraction is fundamental.
We propose a very simple method to switch the segmentation from a
texture-oriented to an edge-oriented segmentation. When using the
predicate of equation (2), we find out textures. But if we replace this
predicate by the one described in equation (4), we will find out all
the edges higher than a fixed threshold.

P(s1,s2) =

{
true i f ∆v(p1, p2)≤ tr

f alse otherwise
(4)

∆v(p1, p2) = max
a∈[R,G,B]

(a1−a2).

Where (p1, p2) is the edge being processed, s1, s2 are segments con-
taining p1 and p2, tr is a threshold fixed experimentally to 10 for
g = 255. In Fig.4 we show the result of segmentation of one image
for the two predicates. In Fig.4(a) we show the result of a textured-
oriented segmentation with the first predicate of one textured image.
Notice that the textures are well segmented. In Fig.4(b) we show the
result of an edge-oriented segmentation by using the second predi-
cate. We can see all the edges in white colour.

CONCLUSION
Actually we are investigating to build a memory system where

data is accessed by content instead of address. With such a system,
we will implement the ”FIND” operation efficiently. The solutions
proposed in this paper are tested in C language. Our research is now
directed toward a study of a real hardware implementation of these
ideas.
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